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ABSTRACT 

Demand for clean, secure and sustainable energy sources is increasing rapidly day-by-day. 

Photovoltaic technology is one among them that converts sun's solar energy into electrical energy. But 

abnormal conditions such as faults, low irradiance etc. lead to the reduction in the available output 

power from the photovoltaic array. To ensure performance and safety of the PV system, it is necessary 

to develop techniques that can efficiently localize faults that occur among its components. Among the 

various faults, this paper presents a fault detection scheme for LL and LG faults in the PV array. Such 

faults when remain undetected, lower the output of solar system along with damaging the panels and 

potentially cause fire hazards. The presented fault detection scheme employs Multi-Resolution Signal 

Decomposition (MSD) technique and two machine learning algorithms namely Fuzzy Logic and K-

Nearest Neighbour (KNN) to classify the fault and determine its location. Simulation and 

experimental results verify the accuracy, reliability and scalability of the presented scheme. 

INTRODUCTION 

Many physical systems only have the peculiarity of nonnegative states, which are called positive 

systems, such as absolute temperatures, population levels, height of human body and concentration of 

a substance in chemical processes [1], [2]. In the past decade, the positive system control has received 

much attention and many important results have been proposed. On the basis of Gersgorin’s theorem, 

the stabilization methods were proposed for positive linear continuous-time and discrete-time systems 

in [3]. In [4], a necessary and sufficient linear matrix inequality condition was presented for the 

stabilization of positive linear systems. A static feedback controller was designed to stabilize the 

positive linear continuous-time systems in [5]. In [6], the sufficient conditions of asymptotic stability 

were given for positive Takagi-Sugeno (T-S) fuzzy systems based on multiple Lyapunov functions. 

The problem of `1-induced controller design was investigated for discrete-time positive systems with 

the use of linear Lyapunov function in [7]. In [8], the stabilization problem was studied for 

continuous-time positive systems with interval uncertainties based on a designed `1-induced output-

feedback controller. The `1-induced sparse controller was designed for continuoustime positive 

systems with interval uncertainties in [9]. In [10] and [11], the positive filtering problems were 

explored for positive continuous-time systems and positive T-S fuzzy systems based on the `1-

induced performance. The L∞-gain analysis problem was studied for positive linear systems in [12]–

[14]. Furthermore, the stabilization problems of switched positive linear systems were investigated in 

[15]–[18]. The aforementioned works focus on the investigations of the stabilization problems for 

positive linear continuous-time systems, discrete-time positive systems, switched positive linear 

systems and positive T-S fuzzy systems. In addition, many study results have been reported for the 
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control of fractional positive systems (FPS). Over the past decades, the control schemes of 

integralorder systems have been extensively investigated [19]–[24]. Furthermore, fractional systems 

have attracted increasing concerns due to many applications of fractional systems in almost all applied 

sciences such as dynamics of earthquakes, chemical engineering, control of power electronics, signal 

processing and dynamical processes in self-similar structures [25]–[30]. So far, some important 

definitions of fractional derivatives have been given, such as Riemann-Liouville (RL) fractional 

derivative, Caputo definition of fractional derivative and so on [31]. Since fractional calculus 

naturally has hereditary properties and long memory transients, and is also an extension and 

promotion of integer-order calculus concept, which can describe positivesystems well [32]. Thus, it is 

a very active area for the research of positive fractional systems. In particular, stability analysis of 

fractional systems has attracted more attention [33]–[40]. On the basis of the definitions of fractional 

derivatives, many significant conclusions have been proposed for FPS [33]. In [34], a new class of 

continuous-time FPS were introduced and the sufficient conditions were given for the reachability of 

FPS. The stability and stabilization problems were studied for linear FPS via state feedback method in 

[35]. In [36], the necessary and sufficient condition was presented for the boundedness of a 

continuous-time fractional positive system. A minimum energy control problem was investigated for 

continuous-time FPS with bounded inputs in [37]. In [38], the robust stabilization problem was 

explored for continuous-time FPS with bounded control. Stabilization problem was studied for 

continuous-time FPS by using a Lyapunov function in [39]. In [40], a H∞ model reduction problem 

was studied for FPS. In the literature, the issue of external disturbance has not been considered for 

FPS. Therefore, the stabilization problem needs to be further investigated for FPS in the present of 

external disturbances. It is well known that the control performance of plants is characterized by 

external unknown disturbances. Meanwhile, the issue of FDO based control has not been studied for 

FPS with external disturbances. In the field of traditional control, it is well-known that the 

feedforward control provides an effective disturbance compensation method that can achieve prompt 

disturbance attenuation. However, the disturbance has to be measured by sensors for the 

implementation of traditional feedforward control. Unfortunately, the disturbances are usually difficult 

or even impossible to be measured physically by sensors [41]. Since disturbance observers can 

estimate external disturbances by the known information of the controlled plants and the output of 

disturbance observers can be used to design the control law [42]. As a result, the disturbance rejection 

is guaranteed to improve the performance and robustness of the closed-loop system. Therefore, the 

developing disturbance estimation techniques could alleviate the restriction faced by traditional 

feedforward control and reject the effect of external disturbances. In past years, the studies of 

disturbance observers have obtained much attentions. There are many important disturbance observer 

based control schemes have been presented for integerorder nonlinear systems [43]–[46]. In [47], a 

nonlinear disturbance observer was developed for robot manipulators. A disturbance observer based 

control method was proposed for the nonlinear system with disturbance in [48]. In [49], the adaptive 

fuzzy tracking control scheme was studied based on the disturbance observer for multi-input and 

multioutput nonlinear systems. An overview of the disturbance observer based control and related 

methods were reported in [50]. In [51], using a nonlinear disturbance observer, a sliding-mode control 

method was presented for systems with mismatched uncertainties. The disturbance observer based 

control schemes were proposed for near-space vehicles (NSV) in [52] and [53]. In [54], a robust 

adaptive tracking control scheme was proposed for the underwater robot in the presence of parametric 

uncertainties and unknown external disturbances. The robust attitude control scheme was developed 

for NSV with time-varying disturbances based on backstepping technique in [55]. According to above 

discussions, the anti-disturbance ability of control systems can be improved by employing the 

disturbance observer in the control design for uncertain systems with external disturbances. However, 

the design methods of FDO has rarely been reported for the control of FPS with unknown 

disturbances, although a number of studies considered the disturbances in fractional systems [56], 

[57]. An adaptive sliding mode controller was designed for uncertain fractional chaotic systems with 

external disturbance in [56]. In [57], an adaptive fractional switching-type control method was 
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explored for the three-dimensional fractional system. However, the uncertainties and disturbances in 

fractional nonlinear systems were tackled using adaptive estimation methods in [56] and [57]. 

Therefore, the disturbance observer based control scheme needs to be further investigated for the 

stabilization of FPS. Motivated by above discussions, the problem of stabilization is investigated for 

continuous-time fractional systems in the presence of unknown constant disturbances with closedloop 

positivity based on a FDO. The organization of the paper is as follows. Section 2 details the problem 

formulation. The FDO is introduced and the stabilization control scheme is presented based on the 

developed FDO and the state feedback control method in Section 3. Meanwhile, the numerical 

simulation studies are given to demonstrate the effectiveness of the developed control scheme, 

followed by some concluding remarks in Section 4. Notation and Definitions: • R n denotes the n-

dimensional real space. • N T denotes the transpose of a matrix N. • A matrix N0 ∈ R n×n is called a 

Metzler matrix if its offdiagonal elements are nonnegative. • A matrix N1 ∈ R n×n can be seen as a 

nonnegative matrix if all its elements are nonnegative, e.g., N1 ≥ 0. • A vector 8 can be seen as a 

nonnegative vector if all its elements are nonnegative, e.g., 8 ≥ 0. It is said to be positive if all its 

components are positive (8 > 0). 

LITERATURE SURVEY 

L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications. New York, NY, 

USA: Wiley, 2000.  

Positive systems are, for instance, networks of reservoirs, industrial processes involving chemical 

reactors, heat exchangers and distillation columns, storage systems (memories, warehouses,...), 

hierarchical systems, compartmental systems (frequently used when modeling transport and 

accumulation phenomena of substances in the human bodies), water and atmospheric pollution 

models, stochastic models where state variables must be nonnegative since they represent 

probabilities, and many other models commonly used in economy and sociology. One is tempted to 

assert that positive systems are the most often encountered systems in almost all areas of science and 

technology, except electro mechanics, where the variables (voltages, currents, forces, positions, 

velocities) may assume either positive and negative values. However, the existence of positive 

systems in an electrical or mechanical context cannot be excluded. Consider, as an example, a simple 

mechanical system composed of a point mass driven along a straight line by an external force. 

Position and velocity of the mass cannot become negative provided their initial values are 

nonnegative and the force is unidirectional: This is a positive system. On the other hand, even the 

simplest electrical circuit, namely, the R - C circuit, is a positive system since the voltage on the 

capacitor remains nonnegative if initially such. Positive linear systems, as any other linear system, 

satisfy the superposition principle and also a peculiar one, that of comparative dynamics. Such a 

principle can be expressed by saying that "positive perturbations of inputs, states, and parameters 

cannot produce a decrease of the state and output at any instant of time following the perturbation". 

This rule can be quite useful whenever one is interested in a qualitative analysis of the influence of 

some design parameter (or input) on the system. Among a number of properties holding for positive 

systems, the one concerning a dominant mode undoubtedly stands out. It often allows one to 

dramatically simplify the stability analysis. This property is expressed through a series of results 

known as the Frobenius-Perron theorems, holding for matrices with positive entries. But, even more 

important is the fact that a number of properties rely only on the structure of the system, that is on the 

structure of existing influences among all the input, state, and output variables. In other words, it often 

suffices to know "who influences who" in order to give a complete answer to fundamental questions. 

In fact, if the influence of one variable on another is always positive, the compensation among 

different paths of influence will not be allowed. Due to this property, the influence graph, which 

shows the direct influences among the variables, becomes a valuable tool (structural model) of 

analysis. For this reason, after the definition of positive systems, we will introduce the notion of the 

influence graph and will systematically highlight which properties rely on the topology of the graph 
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and which on the "level of influence". We will first discuss the classical properties of dynamical 

systems, that is, stability, reachability, observability, input-output maps, and minimum phase. 

Obviously, other properties of peculiar interest for positive systems, such as cyclicity, primitivity, 

excitability, and transparency will also be considered. These properties will enable us to give a better 

physical interpretation of the various results presented in the book. Following the exposition of the 

theory, we will consider a number of applications tied to models widely used by researchers and 

professionals during the last decades. We will discuss, in particular, the Leontief model used by 

economists for predicting productions and prices; the Leslie model used by demographers to study 

age-structured populations; the Markov chains; the compartmental models; and the birth and death 

processes, relevant to the analysis of queueing systems. At the end of this book, we will present a 

detailed guided bibliography and two appendixes concerning linear algebra and linear systems theory 

in order to make, if needed, the reader familiar with the mathematics used throughout the book.  

T. Kaczorek, Positive 1D and 2D Systems. New York, NY, USA: Springer-Verlag, 2002.  

In positive systems inputs, state variables and outputs take only nonnegative values. A variety of 

models having positive systems behavior can be found in engineering, management science, 

economics, social sciences, biology and medicine, etc. An overview of the state of the art in positive 

systems is given in the monographs of Farina and Rinaldi (2000) as well as Kaczorek (2002). Positive 

continuous-discrete 2D linear systems were introduced by Kaczorek (1998) along with positive hybrid 

linear systems (Kaczorek, 2007) and positive fractional 2D hybrid systems (Kaczorek, 2008a). 

Various methods of solvability of 2D hybrid linear systems were discussed by Kaczorek et al. (2008), 

and the solution to singular 2D hybrids linear systems was derived by Sajewski (2009). The 

realization problem for positive 2D hybrid systems was addressed by Kaczorek (2008b). Some 

problems of dynamics and control of 2D hybrid systems were considered by Dymkov et al. (2004) 

and Gałkowski et al. (2003). The problems of stability and robust stability of 2D continuous-discrete 

linear systems were investigated by Bistritz (2003), Busłowicz (2010a; 2010b, 2011) and Xiao 

(2001a; 2001b; 2003). Recently, stability and robust stability of a general model and of a Roesser type 

model of scalar continuous-discrete linear systems were analyzed by Busłowicz (2010a; 2010b; 

2011). In this paper, new necessary and sufficient conditions for asymptotic stability of positive 

continuous-discrete 2D linear systems will be presented. The following notation will be used: R is the 

set of real numbers, Z+ stands for the set of nonnegative inte gers, Rn×m denotes the set of n×m real 

matrices, Rn×m + is the set of n × m matrices with nonnegative entries and Rn + = Rn×1 + , In 

denotes the n × n identity matrix. 

T. Kaczorek, ‘‘Stabilization of positive linear systems by state feedback,’’ Pomiary Automatyka 

Kontrola, vol. 3, pp. 2–5, 1999 

This paper is concerned with the stability and stabilization of continuous-time interval systems. For 

stability analysis and stabilization of positive continuous-time interval systems, new necessary and 

sufficient conditions are derived. In particular, the proposed conditions can be easily implemented by 

using linear programming method. It is utilized to stabilize the system being positive and 

asymptotically stable via dynamic state feedback control. Finally, we provide an example to 

demonstrate the effectiveness and applicability of the theoretical results. Positive systems mean that 

the state variables are nonnegative at all times whenever the initial conditions are nonnegative. In the 

literature [1]-[4], many physical systems and applications are positive in the real world. For example, 

some applications include population numbers of animals, absolute temperature, chemical reaction, 

heat exchangers. Since positive systems have numerous applications in various areas, the stability 

analysis and synthesis problems for positive systems are important and interesting. In the recent years, 

therefore many results of positive systems have been presented [5]-[19]. Kaczorek [14] use 

Gersgorin’s theorem and quadratic programming to establish a sufficient condition. Recently, some 

results of state-feedback controller have been obtained by linear matrix inequality (LMI) and linear 
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programming (LP) in [15] and [16], respectively. The necessary and sufficient conditions by using a 

vertex algorithmic approach are obtained in [17]. Shu [18] fully investigates the observers and 

dynamic output-feedback controller problems of the positive interval linear systems, with time delay 

is presented in [19]. In this paper, a necessary and sufficient condition is proposed to solve the 

positivity and stability problem of interval systems. Combining the proposed condition with linear 

programming to establish the state-feedback controller, then the closed-loop system is not only 

asymptotically stable, but also positive. 

H. Gao, J. Lam, C. Wang, and S. Xu, ‘‘Control for stability and positivity: Equivalent conditions 

and computation,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 9, pp. 540–544, Sep. 

2005. 

This paper investigates the stabilizability of linear systems with closed-loop positivity. A necessary 

and sufficient condition for the existence of desired state-feedback controllers guaranteeing the 

resultant closed-loop system to be asymptotically stable and positive is obtained. Both continuous- 

and discrete-time cases are considered, and all of the conditions are expressed as linear matrix 

inequalities which can be easily verified by using standard numerical software. Numerical examples 

are provided to illustrate the proposed conditions. I N MANY practical systems, variables are 

constrained to be nonnegative. Such constraints abound in physical systems where variables are used 

to represent levels of heat, population, and storage. For instance, age-structured populations described 

by certain Leslie models [6], compartmental models used in hydrology and biology applications, can 

be described by positive systems [13], [18], whose states and outputs are nonnegative whenever the 

initial condition and input signal are nonnegative. Since positive systems are defined on cones, not on 

linear spaces, many well-established results of general linear systems cannot be simply applied to 

positive systems. Therefore, in recent years, many researchers have shown their interests in positive 

systems and many fundamental results have been reported (see, for instance, [1]–[3], [7], [11], [12], 

[16], [17], [19], and [20] and the references therein). Among the great number of research results 

obtained for positive systems, much attention has been devoted to the behavioral analysis of such 

systems (readers are referred to [8] and [15] for a detailed account of the recent developments in 

positive systems). Meanwhile, the synthesis problems under the positivity constraint seem to have 

received relatively less attention. More specifically, the results about how to design controllers to 

obtain a closed-loop system which is stable and positive are still very limited [10], [21]. That is, given 

a possibly unstable linear system, does there exist a controller such that the resultant closed-loop 

system is asymptotically stable and positive? Moreover, if the answer is yes, how can we find one? 

Recently, Kaczorek [14] investigated the problem mentioned above. Using Gersgorin’s theorem, 

existence conditions for state-feedback controllers were proposed for positive systems. It is worth 

mentioning that these conditions are only sufficient, and are only suitable for single-input systems. In 

the present work, we further investigate the stabilization problem for both continuous- and discrete-

time multiple-input–multiple-output (MIMO) systems under the condition that the closed-loop system 

is positive. Instead of using algebraic techniques which have been widely employed for the analysis of 

positive systems, our development is based on matrix inequalities. Based on the well-established 

results of Lyapunov stability theory and nonnegative matrix, equivalent conditions in terms of linear 

matrix inequalities (LMIs) are obtained for the existence of stabilizing state-feedback controllers. A 

remarkable advantage of these conditions lies in the fact that they are not only necessary and 

sufficient, but also can be easily verifiable by using some standard numerical software. Moreover, 

these conditions readily construct a desired controller if it exists. To the authors’ knowledge, this work 

represents the first LMI treatment on control synthesis for guaranteeing asymptotic stability and 

positivity. The remainder of this paper is organized as follows. Sections II and III present a necessary 

and sufficient condition for stabilization with positivity constraint, both for continuous- and discrete-

time linear systems. Numerical examples are given in Section IV to illustrate the proposed method, 

and we conclude this paper in Section V. Notations: The notations used throughout the paper are fairly 

standard. The superscript “ ” stands for matrix transposition; denotes the -dimensional Euclidean 
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space; is the set of all real matrices of dimension ; is the set of all real matrices with nonnegative 

entries and ; the notation means that is real symmetric and positive definite; and 0 represent identity 

matrix and zero matrix, respectively; stands for a block-diagonal matrix. Matrices, if their dimensions 

are not explicitly stated, are assumed to be compatible for algebraic operations. 

C. Wang and T. Huang, ‘‘Static output feedback control for positive linear continuous-time 

systems,’’ Int. J. Robust Nonlinear Control, vol. 23, no. 14, pp. 1537–1544, 2013. 

This paper presents anewtechnique todesign static output-feedback controllers for continuous-

timepositive uncertain linear systems. The design is performed throughan 

iterativealgorithmbasedonparameter-dependentlinearmatrixinequalityconditions,solvedby 

meansofrelaxations,withlocalconvergenceguaranteed.Aqualifiedfeasiblesolutionprovidesa 

stabilizingoutput-feedbackcontrollerthatalsoassuresthepositivityoftheclosed-loopsystem. 

Themainadvantageof theproposedmethodologyisthatthecontrolgainishandleddirectly as an 

optimizationvariable, that is, no change of variables is needed to recover the gain andnoparticular 

structure (e.g., diagonal) is imposed on theLyapunovor slackvariable matrixtoguaranteeclosed-

looppositivity.Thisparticular featurealso facilitates thedesign ofdecentralizedorelement-

wiseboundedgains,asillustratedbynumericalexperiments eat advance of the computational processing 

capac ity have allowed to solve increasingly complex control problems regardingdynamic systems 

subject to uncer tainties. Inthis scenario, convexoptimizationtechniques 

basedonsemidefiniteprogrammingstandout, specially those formulated in terms of linearmatrix 

inequalities (LMIs)[Boydetal.,1994,ElGhaouiandNiculescu,2000]. At the same time, awide range of 

practical problems is concernedwithsystems thathavenon-negativestates 

andoutputs,whosevariablesareusuallyassociatedwith 

physicalparametersthatcanonlyassumepositiveornull values. Inthiscontext, 

thesocalledpositivesystemscan suitablymodelindustrialprocesseswithchemicalreactors, 

heatexchangers,water reservoirs,networkflows, storage and communications systems [Berman 

andPlemmons, 1979,Luenberger,1979,FarinaandRinaldi,2000].Other 

applicationscanbefoundineconomicsandsociology,with demographic and sociological 

populationmodels, or in orcellcultures[BermanandPlemmons,1979,Luenberger, 

1979,FarinaandRinaldi,2000]. Beyond the practical appealing, anothermotivation to investigate the 

control of positive systems is that not allmethods employed tohandle linear systems canbe 

directlyextendedtodealwithpositivesystems [Caccetta 

andRumchev,2000].Notethattoassurethepositiveness oftheclosed-loopcontinuous-

timesystemisequivalentto verifyiftheclosed-loopdynamicmatrixisMetzler(thatis, 

withnonnegativeoffdiagonalelements).Recently,several 

approachesemergedinthecontroltheoryliteratureaiming totreat thisproblem[Briat, 2013,Ebiharaetal., 

2014, Ait-Rami etal., 2014,ShenandLam, 2015, 2017, 2016, 

TanakaandLangbort,2011,WangandHuang,2013].One 

ofthechallengesishowtoextendthemethodsdeveloped forsingle 

inputsingleoutputsystems,asthosebasedon linear programming [Arneson andLangbort, 2012, Ait 

Rami, 2011,RoszakandDavison, 2009], tohandle the multi-

variablecase.Besidesthat,althoughLMIsynthesis conditions for state-feedbackcontrol of positive 

systems canbeobtainedas adirect extensionof the techniques presentedinthe literature for traditional 

linear systems. 

A. Benzaouia, A. Hmamed, and A. El Hajjaji, ‘‘Stabilization of controlled positive discrete-

time T-S fuzzy systems by state feedback control,’’ Int. J. Adapt. Control Signal Process., 

vol. 24, no. 12, pp. 1091–1106, 2010.  

This paper deals with sufficient conditions of asymptotic stability and stabilization for nonlinear 

discrete-time systems represented by a Takagi–Sugeno-type fuzzy model whose state variables take 
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only nonnegative values at all times t for any nonnegative initial state. This class of systems is called 

positive systems. The conditions of stabilizability are obtained with state feedback control. This work 

is based on multiple Lyapunov functions. The results are presented in linear matrix inequalities form. 

A real plant is studied to illustrate this technique This paper proposes a novel Lyapunov stabilization 

analysis of discrete-time polynomial-fuzzy-model-based (PFMB) control systems with time delay 

under positivity constraint. The polynomial fuzzy model is constructed to describe the dynamics of a 

non-linear discrete-time system with time delay. A model-based polynomial fuzzy controller is 

designed using non-parallel distributed compensation (PDC) technique to stabilize the system while 

driving the system states to positive using the positivity constraints. The Lyapunov stability and 

positivity conditions are formulated as sum-of squares (SOS). To relax the conservativeness of the 

obtained stability results, two main methods are proposed in this paper: 1) the piecewise linear 

membership functions (PLMFs) is used to introduce the approximate error between piecewise and the 

original membership functions into the stability analysis, 2) introduce the boundary information of the 

premise variables into the stability analysis since the premise variables hold rich non-linearity 

information. A Numerical examples are given to demonstrate the effectiveness of the proposed 

approach. 

X. Chen, J. Lam, P. Li, and Z. Shu, ‘‘`1-induced norm and controller synthesis of positive 

systems,’’ Automatica, vol. 49, no. 5, pp. 1377–1385, 2013. 

In this paper, the problem of ℓ1ℓ1-induced controller design for discrete-time positive systems is 

investigated with the use of linear Lyapunov function. An analytical method to compute the exact 

value of ℓ1ℓ1-induced norm is first presented. Then, a novel characterization for stability and ℓ1ℓ1-

induced performance is proposed. Based on the characterization, a necessary and sufficient condition 

for the existence of desired controllers is derived, and an iterative convex optimization approach is 

developed to solve the condition. In addition, the synthesis of the state-feedback controller for single-

input multiple-output (SIMO) positive systems is investigated. For this special case, an analytic 

solution is established to show how the optimal ℓ1ℓ1-induced controller can be designed, and some 

links to the spectral radius of the closed-loop systems are provided. Finally, the theoretical results are 

illustrated through a numerical example. 

CONCLUSION 

In this paper, the FDO-based stabilization control scheme has been studied for continuous-time 

fractional linear system in the presence of unknown constant disturbances. To improve the ability of 

disturbance attenuation, a FDO has been employed to approximate the unknown disturbances. By 

using the developed FDO and the state feedback control method, a stabilization controller has been 

designed to guarantee the closed-loop system states positive and asymptotically stable. Furthermore, a 

sufficient condition of stabilization has been given for the case of constrained states offractional 

systems with constant disturbances. As the same time, two numerical simulations have been shown to 

illustrate the effectiveness of the developed control scheme. 
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